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Abstract 

This thesis analyses portfolio optimization using the risk measures VaR and CVaR with two different 

underlying assumptions of probability distribution of returns; one being that portfolio returns are 

normal distributed and the other being a discrete distribution comprised of historical data. The 

models are run through numerous historical simulations on the OMXS30 with varying time period for 

historical data and rebalance frequencies. The resulting simulated returns as well as the CVaR 

outcomes are presented, compared and discussed in order to assess which model performs the best 

and under what circumstances. 

Our key findings is that using a discrete, historical probability distribution for optimizing a portfolio 

with respect to CVaR, comprised of around 320 days worth of data and using a rebalancing frequency 

of 20 days performs the best with respect to total return and actual CVaR. This method manages to 

take the fat tails of the market return distribution into account and as such successfully avoids the 

larger market downturns. 

The results of this thesis also indicate that historical VaR optimization is inferior to CVaR 

optimization. However due to lack of computational power this comparison is inconclusive. 
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Sammanfattning 

Denna uppsats analyserar portföljoptimering med avseende på riskmåtten ”Value at Risk” (VaR) och 

”Conditional Value at Risk” (CVaR) utifrån två olika antaganden om den underliggande 

sannolikhetsfördelning för hur avkastning ser ut. Den ena antar att portföljavkastningen följer en 

normalfördelning medan den andra skapar en diskret sannolikhetsfördelning direkt av de historiska 

aktiekurserna.  

Modellerna analyseras med hjälp av en simulering på OMXS30 med varierande tidsspann för 

historiska data samt varierande ombalanseringsintervall. De resulterande avkastningarna och 

faktiska utfallen för CVaR presenteras, jämförs och diskuteras för att bestämma vilken metod som 

presterar bäst och under vilka förutsättningar. 

Våra huvudsakliga resultat är den av våra fyra modeller som lyckas skapa den högsta avkastningen 

såväl som den lägsta risken är den som optimerar CVaR utifrån antagandet om en diskret historisk 

avkastningsfördelning. För att erhålla ett optimalt resultat verkar det vara bäst att använda sig av en 

tidshorisont på omkring 320 dagar av historiska data som underlag för optimeringen. Den historiska 

modellen för att förutsäga avkastningen lyckas även ta in den ”sanna” avkastningsfördelningens 

tjocka svansar i beräkningen och lyckas i viss utsträckning också undvika stora marknadsnedgångar. 

Resultaten indikerar att diskret, historisk VaR-optimering är underlägsen CVaR-optimering. På grund 

av bristande datorkraft är denna jämförelse dock ofullständig. Tidsåtgången för den historiska VaR-

optimeringen är en stor nackdel för den modellen.  
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1. Introduction 

1.1 Background 

Balancing risk against return is a crucial aspect of managing a financial portfolio. The expected return 

of a portfolio is a parameter that is rather straight forward to calculate and understand. Risk is a 

different matter and its meaning and concept is less obvious and less explicit. Since Markowitz 

introduced “Modern Portfolio Theory” (MPT) the most commonly used measure for risk amongst 

investors is the standard deviation (Markowitz, 1952). Over time and especially in the aftermath of a 

financial crisis, critical voices have been arguing that this measure falls short of taking many crucial 

points into account (Stoyanov, Rachev, & Fabozzi, 2013). One drawback is the way MPT models the 

return of a portfolio. The return of the portfolio is generally viewed as a stochastic variable belonging 

to a certain probability distribution. MPT assumes that this distribution is elliptical, usually the 

normal distribution. Several historical studies have shown that this assumption does not account for 

important abnormalities in the lower end of the probability distribution, namely that high losses are 

more likely to occur than the normal distribution would suggest (Fortin & Kuzmics, 2000) (J.P. 

Morgan Asset Management, 2009). This is mainly because of a factor known as tail dependence 

which implies that the covariances between stock-pairs are not the same during extraordinary 

market circumstances as they are during “normal” market conditions. This might lead to an 

underestimation of risk and mislead an investor into taking a riskier position than preferred (J.P. 

Morgan Asset Management, 2009). One way to circumvent this problem is to use a discrete 

probability function based directly on the historical stock returns instead of assuming that returns 

follow a certain probability distribution. 

Another drawback of MPT is that the risk measure (standard deviation) focuses equally on profits 

and losses. A large profit carries as much weight as a large loss (Stoyanov, Rachev, & Fabozzi, 2013). 

When evaluating the risk of a portfolio the main interest is the potential losses and as a result several 

other risk measures have gained popularity in recent years. The most commonly known is Value at 

Risk (VaR), which was made popular by JP Morgan’s RiskMetrics™ in 1994 and was included in BCBS’s 

recommendations for banking regulation in Basel II, 2004. This measure focuses on the left end tail of 

the probability distribution and thus focuses on the risk for incurring heavy losses. Even though the 

concept of VaR is rather simple to grasp and that it in many aspects is a highly relevant risk measure, 

it is by no means perfect. Following the financial crisis of 2008 it has been criticized for some of its 

flaws (Einhorn, 2008) (Nocera, 2009). The greatest drawback is that VaR does not provide any 

information regarding how much one is expected to lose given that the “unlikely” scenarios of a large 

loss occur. A risk measure that does take this into account is “Conditional Value at Risk” (CVaR) which 
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is the expected loss given that the loss exceeds VaR. Aside from a superior description of risk, CVaR 

also possesses better mathematical properties than VaR as it is always sub-additive and the 

optimization problem when optimizing w.r.t CVaR has convex properties (Uryasev & Rockafellar, 

Optimization of conditional value-at-risk, 2000). 

1.2 Purpose and aim 

This thesis analyzes portfolio optimization with respect to CVaR and VaR using two different 

assumptions of underlying probability distributions of portfolio returns. The first model, the 

historical, is based on a discrete probability distribution created directly through historical data. The 

second, the analytical model, is based on the assumption of returns being normal distributed.  

The main purpose of this study is to contribute to research and literature and to provide different 

types of investors, private of professional, with insights regarding portfolio management with the risk 

measures CVaR and VaR. 

The results of this study provide information regarding the advantages and disadvantages for the 

different models as well as what effect the phenomenon of tail dependence of market returns has 

when looking at CVaR and VaR. This thesis also discusses the relevance of CVaR and VaR for different 

types of investors and the effects of fat tails in the lower end of the return distribution is analyzed 

with respect to how important it is for different investors to take these “abnormalities” into account. 

The thesis seeks to answer the following questions: 

 What is the effect of tail dependence of the market’s historical returns when optimizing a 

portfolio with respect to VaR and CVaR? 

 Is one approach (historical or analytical) to determining VaR and CVaR consistently better 

than the other, even when underlying assumptions are changed? 

 What is the performance of the historical approach compared to the analytical approach 

during periods of economic crisis? 

 Of what importance is the market’s tail dependence for different kinds of investors and how 

should it be handled? What relevance does CVaR and VaR hold for different investors?  
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2. Theoretical background 

This section serves to provide the mathematical theory on which this thesis is be based. The two 

different risk measures to be used are presented as well as how to model the portfolio return 

distribution. 

2.1 Risk management 

As touched upon in the introduction there are several ways for an investor to measure risk, none of 

them necessarily more correct than others. In this sub-section the two risk measures “Value at Risk” 

(VaR) and “Conditional Value at Risk” (CVaR) are explained. 

2.1.1 Value at Risk - VaR 

Value at Risk is a risk measure which describes the highest loss that is “likely” to occur. What “likely” 

means is that the losses with a certain confidence level do not exceed a certain magnitude. For 

example a VaR of $100 and a confidence interval of 0.95 implies that the portfolio loss, with a 

probability of 95%, does not exceed $100 over a certain time period. 

The mathematical definition is as follows: 

𝑉𝑎𝑅𝛼 = inf  {𝑟 ∈ 𝑹 ∶ 𝑃(−𝑅 > 𝑟) ≤ 1 − 𝛼 } 

where 𝛼 is the confidence interval and 𝑅 is a stochastic variable for the portfolio return. Since 𝑅 

denotes the return of the portfolio, −𝑅 denotes the loss. VaR is discussed as a positive term, even 

though the return associated with the VaR level is most often negative.  

There are several benefits in using VaR as a risk measure. Unlike standard deviation, the meaning of 

VaR as a risk measure is more comprehensible, even for persons who lack a deeper knowledge of 

mathematics. Furthermore VaR only focuses on losses and the opportunity of high profits does not 

affect VaR.  

There are numerous drawbacks of VaR however. First and foremost, VaR does not take into account 

the magnitude of losses greater than VaR. For example, given a probability distribution of 𝑅 that 

generates a VaR of $100 and a worst scenario for the loss on $500. If we would increase this “worst 

possible loss” to $1000 it would not affect the value of VaR but it would change the actual portfolio 

risk substantially.  VaR is also not sub-additive which can lead to a portfolio VaR being higher than 

the sum of the components’ individual VaR. 

2.1.2 Conditional Value at Risk - CVaR 

A risk measure that does take every scenario in the tail end of the return distribution into account is 

Conditional Value at Risk, also known as Expected Shortfall. CVaR informs the investor about the 
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expected value of the loss given that the outcome is in the bottom 𝛼-percentile. For example a CVaR 

of $100 with a confidence interval of 0.95 implies that the expected portfolio loss given that the 

portfolio loss falls in the bottom 5% is equal to $100. 

The mathematical definition is as follows: 

𝐶𝑉𝑎𝑅𝛼 = 𝐸[−𝑅 | 𝑅 ≤ −𝑉𝑎𝑅𝛼] 

CVaR, unlike VaR, is sub additive which is preferable in a diversification aspect. The total risk of a 

portfolio is less than or equal to the sum of the risk of the individual assets. 

2.2 Expected return 

When predicting the future returns of a portfolio the portfolio return is assumed to be a stochastic 

variable belonging to some probability distribution. Which probability distribution to be used is 

determined beforehand and varies amongst investors and situation. Historical stock data is often 

used to calculate the parameters of the chosen distribution. The time horizon for historical data 

collection may vary from a month to several years. 

The expected future return, 𝑟𝑖, for a certain stock is calculated using 𝑁 number of historical closing 

prices as such: 

𝑟𝑖 =
1

𝑁
∑ 𝑟𝑘𝑖

𝑁

𝑘=1

 

2.2.1 Analytically 

In the classical Markowitz MPT the returns are assumed to belong to a normal distribution,  

𝑅 ∈ 𝑁(𝜇, 𝜎2) , where 𝜇 and 𝜎2 is calculated as follows: 

𝜇 = ∑ 𝑤𝑖 ∗ 𝑟𝑖
𝑛
𝑖=1  , 𝜎2 = ∑ 𝑤𝑖

2 ∗ 𝑉𝑎𝑟(𝑟𝑖) + 2 ∗ ∑ ∑ 𝑤𝑖 ∗ 𝑤𝑗 ∗ 𝐶𝑜𝑣(𝑟𝑖, 𝑟𝑗)<𝑗<𝑛𝑖≤𝑖
𝑛
𝑖=1   

𝑤𝑖 is the percentage of the total capital invested in stock 𝑖 and 𝑟𝑖  is the expected return of stock 𝑖. 

Or in matrix notation: 

𝜇 = 𝑟̅ ∗ 𝑤̅,  𝜎2 = 𝑤̅𝑇𝐶 𝑤̅ 

where 𝐶 is the covariance matrix of the different stocks. 

2.2.2 Historically 

The return can also be assumed to have a discrete distribution where the different outcomes are 

denoted by how the portfolio would have performed the last N number of days. 
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If 𝑅𝑘  is the return the portfolio would have had on day 𝑘, then 𝑃(𝑅 = 𝑅𝑘) =
1

𝑁
 , 𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑁 

𝑅𝑘 = ∑ 𝑤𝑖 ∗ 𝑟𝑘𝑖
𝑛
𝑖=1 , where 𝑟𝑘𝑖  is the return of asset i on day k and 𝑤𝑖 is the portfolio weight. As can 

be seen the returns on the different days are linear functions of the portfolio weights.  

If using the historical model when optimizing a portfolio with respect to a certain risk measure, the 

generated portfolio is the one that would have performed the best over the last 𝑁 days. 

2.3 Tail dependence of market returns 

When determining the overall risk of a portfolio consisting of stocks with individual risk it is of 

interest for the investor to analyze how the stocks interact with one another. This is traditionally 

done by examining the correlation between stock-pairs and creating a correlation-matrix consisting 

of the correlation between each stock which may be a part of the portfolio (Markowitz, 1952). This 

relationship of how the stocks interact is not static and is subject to change over time. During normal 

market conditions one may assume the correlation to be quite indicative of the stocks’ actual 

interaction. During periods of abnormal market movements such as a large decrease or increase of 

the market index these correlations between stocks no longer hold true (Fortin & Kuzmics, 2000). 

This leads to the conclusion that assuming that returns follow a normal distribution when analyzing 

portfolio risk does not hold true during large market movements. This is known as tail dependence of 

market returns. The effect of this is that large portfolio losses are more likely to occur than a normal 

distribution would suggest. 

Looking at the two following tables of OMXS30 returns and FTSE100 returns compared to a normal 

distribution assumption of their returns the effect of tail dependence becomes quite obvious. 

Table 1 shows the percentage of actual daily returns on OMXS30 index during the period 03012000-

01012015 in comparison to what percentage a normal distribution would assume. 

Lower tail-end of normal distribution Percent actual returns 

5.00 4.77 

4.00 4.12 

3.00 3.52 

2.00 2.79 

1.00   1.88 

Table 1 - Tail dependence OMXS30 

Table 2 shows the percentage of actual daily returns on FTSE100 index during the period 03012000-

01012015 in comparison to what percentage a normal distribution would assume. 
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Lower tail-end of normal distribution Percent actual returns 

5.00 4.43 

4.00 4.02 

3.00 3.46 

2.00 2.71 

1.00 1.82 

Table 2 - Tail dependence FTSE100 

As can be seen from the above tables the return distributions has fat tails when looking at both 

OMXS30 and FTSE100. There are between 80-90% more returns in the lowest percentile than the 

assumption of normal distribution assumes. 
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3. Methodology 

Four models of portfolio optimization based on two different ways of determining Conditional Value 

at Risk and Value at Risk are created. One model relies on determining CVaR and VaR using the 

analytical approach and the other uses the historical approach.  

The models are run through numerous historical simulations with changes in underlying assumptions 

of parameters such as time horizon of past data and rebalancing interval and are then compared with 

each other. 

There are a few academic papers regarding portfolio optimization based on CVaR, most notably 

“Optimization of conditional value-at-risk” by Rockafellar and Uryasev. These serve as the basis for 

the mathematical part of this thesis, with main focus on the one mentioned. 

3.1 Optimization models and comparisons 

The first two models determine CVaR and VaR analytically while the second two determine CVaR and 

VaR using the historical approach. All optimization models are subject to the same constraints and 

are based on the same historical data when simulated historically. The models are run through a 

historical simulation in order to gauge their performance over a certain time period. Rebalancing of 

the portfolios occur simultaneously and is based on a fixed time interval of 20 days or 40 days. The 

result of these simulations is a graphical comparison between the portfolios’ performances under 

different constraints and assumptions. 

3.1.1 Time horizon of returns and portfolio rebalancing 

The simulation of the two models is run multiple times with different time horizons for determining 

returns and the different results are compared and analyzed. The period of rebalancing is also 

subject to change in order to determine how the models perform under varying circumstances. The 

length of this period will alternate between 20 days and 40 days chosen for practical reasons from an 

investor’s perspective. 

3.2 Data 

The data needed for this thesis is the daily adjusted closing prices over the selected time periods 

during which the portfolios are simulated. The list of stocks to be considered in the portfolio 

optimizations is a mix between those with the largest turnover per 03-01-2000 (provided by SIX 

Financial Information) and those currently listed on OMXS30 with some exceptions due to 

unavailable data. A list of these stocks is included in the appendix.  The optimal solution would be to 

update the list of stocks which would be part of OMXS30 every period so as to avoid any kind of 

survivorship bias but this is not something done in this thesis as it creates no significant problem 
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since the aim is to compare different models to each other where all models are based on the same 

data.  

Data for each individual stock is retrieved from Yahoo Finance via Matlab. Preprocessing of the data 

as well as the final calculations, simulations and graphing all occur in Matlab as well. 

Data is available from 03012000 up to present day with numerous data points missing for the 

different stocks due to situations such as trading halts. This will be accounted for by interpolation 

using the two closest data points. 

3.3 Delimitations 

This thesis only discusses portfolios consisting of stocks. The optimizations will occur during the time 

period 03012000 - 08042015.  

This thesis looks at historical VaR optimization theoretically and simulates such a model historically. 

However, this cannot be done for a large time horizon of past returns with the computing power 

available for this thesis. The time horizon for the historical VaR optimization will therefore be limited 

to a maximum of 100 days of past returns. As a result the basis for analysis for the historical VaR 

optimization is limited. 

The only confidence interval considered in the optimizations is 𝛼 = 0.95. 

Taxes, risk-free rate and brokerage fees are all excluded from the models. As this thesis is a 

comparison of different optimization models this should not have great impact on the results. 
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4. Portfolio optimization 

This section will construct the optimization problems; Value at Risk analytically and historically, and 

Conditional Value at Risk analytically and historically. 

4.1 CVaR-optimization 

The aim of the CVaR-optimization is to find the portfolio weights that would generate the lowest 

CVaR given that the returns are assumed to belong to some predetermined probability distribution. 

The two different types of return distributions to be considered in this thesis are the normal 

distribution, and a discrete distribution built on the historical portfolio performance as described in 

section 2.2.2. 

4.1.1 Analytically 

As mentioned above the analytical approach assumes the portfolio returns to be normal distributed. 

This section will construct the CVaR-optimization problem with this underlying assumption. 

Given that the returns are normally distributed the expression for CVaR is: 

𝐶𝑉𝑎𝑅𝛼 = 𝐸[−𝑅 | 𝑅 ≤ −𝑉𝑎𝑅𝛼] , 𝑤ℎ𝑒𝑟𝑒 𝑅 ∈ 𝑁(𝜇, 𝜎2)  

The mean and variance of the distribution are functions of the portfolio weights, as described in 

(2.2.1).  

If assuming normally distributed returns the 𝐶𝑉𝑎𝑅𝛼 of the portfolio is just a linear combination of 

the mean and the standard deviation: 

𝐶𝑉𝑎𝑅𝛼 = −𝜎𝑠𝛼 − 𝜇  

The proof for this statement is found in the Appendix under 2. Mathematical derivation of analytical 

CVaR. 

Some values of the constant 𝑠𝛼 given a confidence interval of 𝛼: 

Confidence interval (𝜶) 𝒔𝜶 

0.90 -1,7550 

0.95 -2,0627 

0.99 -2,6652 

Table 3 – Some values of 𝑠𝛼 
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The optimization problem then becomes: 

min
𝑤̅

    𝐶𝑉𝑎𝑅𝛼

  𝑠. 𝑡.   𝑤̅ ∈ Ω
= 

min
𝑤̅

   −𝜇 − 𝜎𝑠𝛼

𝑠. 𝑡.      𝑤̅ ∈ Ω
 

Ω is an arbitrarily chosen set that delimits the allowed portfolio weights, 𝑤̅. 

If 𝜇(𝑤̅) is concave, 𝜎(𝑤̅) is convex and the set Ω is convex (which is the case for 𝐶𝑉𝑎𝑅) then 

according to (Krokhmal, Palmquist, & Uryasev, 2004) this is equal to the following optimization 

problem: 

min
𝑤̅

 −𝜎𝑠𝛼

𝑠. 𝑡.   
𝜇 ≥ 𝑐
𝑤̅ ∈ Ω

=    

min
𝑤̅

  𝜎

𝑠. 𝑡.   
𝜇 ≥ 𝑐
𝑤̅ ∈ Ω

=  

min
𝑤̅

  𝜎2

𝑠. 𝑡.    
𝜇 ≥ 𝑐
𝑤̅ ∈ Ω

     , where 𝑐 is an arbitrarily chosen constant. 

The reason for the lack of the minus sign in the second final problem is because 𝑠𝛼 is always negative 

and thus the entire objective function becomes positive. If 𝑐 → −∞ the constraint 𝜇 ≥ 𝑐 can be 

removed and the obtained value of 𝐶𝑉𝑎𝑅𝛼 is the smallest one for every possible combination of the 

portfolio weights that satisfy 𝑤̅ ∈ Ω. 

The optimization problem will thus be as follows: 

min
𝑤̅

  𝐶𝑉𝑎𝑅𝛼

𝑠. 𝑡.   𝑤̅ ∈ Ω 
=

min
𝑤̅

  𝜎2

𝑠. 𝑡.    𝑤̅ ∈ Ω
=

min
𝑤̅

  𝑤̅𝑇𝐶 𝑤̅

𝑠. 𝑡.   𝑤̅ ∈ Ω 
 

If the portfolio constraints are linear the optimization problem will be on a quadratic form.  

One interesting aspect of this result is that the confidence interval (𝛼) will not affect the outcome of 

the optimization. Another interesting aspect is that this optimization problem minimizes the variance 

of the portfolio returns. This is equal to the classical Markowitz portfolio optimization and thus 

minimizing CVaR and minimizing variance is equivalent if the returns are assumed to be normally 

distributed. 

4.1.2 Historically 

When optimizing CVaR using the historical approach the portfolio weights are determined as the 

combination that would have generated the lowest CVaR over a time period of the last N days. The 

idea behind the CVaR-optimization was developed by (Uryasev & Rockafellar, Optimization of 

conditional value-at-risk, 2000) and states that: 

min
𝑤̅

𝐶𝑉𝑎𝑅𝛼(𝑤̅) = min
𝑤̅

𝐹𝛼(𝑤̅, 𝑢) 

Where 𝐹𝛼 is a help function that approximates 𝐶𝑉𝑎𝑅𝛼 with the introduced help variable 𝑢. 
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When having a discrete sample distribution of the returns the expression for 𝐹𝛼 will be: 

𝐹𝛼(𝑤̅, 𝑢) = 𝑢 +
1

𝑁(1 − 𝛼)
∑[𝑓(𝑤𝑘, 𝜆𝑘) − 𝑢]+

𝑁

𝑘=1

 

This also according to (Uryasev & Rockafellar, Optimization of conditional value-at-risk, 2000). 

The introduced help variable 𝑢 actually represents the 𝑉𝑎𝑅𝛼  of the problem. 𝜆𝑘  are slack variables 

and the function 𝑓(𝑤𝑘, 𝜆𝑘) is the loss of the portfolio at day 𝑘. In our case the loss function will be: 

𝑓(𝑤𝑘, 𝜆𝑘) = −𝑟̅𝑘 ∗ 𝑤̅ 

The reason why only the positive terms of the sum are included is because these are the terms 

representing losses greater than 𝑉𝑎𝑅𝛼. 

The optimization problem using the historical approach for minimizing  𝐶𝑉𝑎𝑅𝛼 will look as follows: 

min
𝑤̅

  𝐶𝑉𝑎𝑅𝛼

 𝑠. 𝑡.   𝑤̅ ∈ Ω
=            

min
𝑤, 𝜆, 𝑢

𝑢 +
1

𝑁(1−𝛼)
∑ 𝜆𝑘

𝑁
𝑘=1

𝑠. 𝑡.    − 𝑟̅𝑘 ∗ 𝑤̅ − 𝜆𝑘 − 𝑢 ≤ 0
𝜆𝑘 ≥ 0
𝑤̅ ∈ Ω

 

𝜆𝑘  will be equal to zero for the days were the losses do not exceed 𝑢. For the rest of the days 𝜆𝑘  will 

correspond to the amount by which the losses exceed 𝑢. The objective function will as a result be the 

mean value of the losses greater than 𝑢.  

4.2 VaR-optimization 

The aim of the VaR-optimization is to find the portfolio weights that generate the lowest possible 

VaR at a confidence level of 𝛼. Most often finding the optimal VaR is a much more difficult task than 

finding the optimal CVaR. This is because VaR in the general case is a non-convex and sometimes 

discontinuous function, and in the discrete case has multiple local minimums (Uryasev, Var vs CVaR 

in Risk Management and Optimization, 2010). 

4.2.1 Analytically 

As in the case of the analytical CVaR-optimization it is assumed in this section that the portfolio 

returns are normally distributed, 𝑅 ∈ 𝑁(𝜇, 𝜎2). 

The expression for VaR at a confidence level of 𝛼 will be: 

𝑉𝑎𝑅𝛼 = −(𝜇 + 𝜎𝜙−1(1 − 𝛼)) = −(𝜇 − 𝜎𝜙−1(𝛼)) =  𝜎𝜙−1(𝛼) − 𝜇 

Minimizing VaR will therefore generate the following optimization problem: 
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min
𝑤̅

𝑉𝑎𝑅𝛼

𝑠. 𝑡.  𝑤̅ ∈ Ω
=

min
𝑤̅

   𝜎𝜙−1(𝛼) − 𝜇

𝑠. 𝑡.      𝑤̅ ∈ Ω
    

On a closer look this is very similar to the analytical CVaR-optimization problem. The only thing that 

differs is the coefficient of the standard deviation, 𝜙−1(𝛼) instead of −𝑠𝛼. If 𝜙−1(𝛼)  belongs to the 

domain of −𝑠𝛼 the VaR optimization could be viewed as a CVaR optimization, but with a different 

confidence level. Since the coefficient −𝑠𝛼 does not affect the outcome of the CVaR optimization (it 

is not an existing factor in the final optimization problem) it logically follows that 𝜙−1(𝛼) will not 

affect the outcome of the VaR optimization. This provided that 𝜙−1(𝛼) belongs to the domain of 

−𝑠𝛼, that is (0, ∞) which requires 𝛼 to be greater than 0,5. If this requirement is not fulfilled the VaR 

optimization cannot be looked at as a CVaR optimization and the reasoning does not hold.  

The optimization will consequently be: 

min 𝑉𝑎𝑅𝛼 ↔ min 𝐶𝑉𝑎𝑅𝛼 =
min

𝑤̅
𝑤̅𝑇𝐶 𝑤̅

𝑠. 𝑡.  𝑤̅ ∈ Ω
 

As a result of this the portfolio generated from minimizing VaR will be equal to the portfolio 

generated by minimizing CVaR and as such also equal to minimizing the portfolio variance. 

4.2.2 Historically 

Minimizing the historical VaR implies that the 𝑛:st largest loss out of a total of 𝑁 is to be minimized, 

where 𝑛 = ⌈𝑁(1 − 𝛼)⌉. (Mausser & Romanko, October 2014) suggest the following Mixed Integer 

Linear Program as a way of minimizing 𝑉𝑎𝑅𝛼. 

min
𝑤̅

𝑉𝑎𝑅𝛼

𝑠. 𝑡.  𝑤̅ ∈ Ω
= 

min
𝑤̅,   𝜆,   𝑢

 𝑢

𝑠. 𝑡.   – 𝑟̅𝑘𝑤̅ − 𝑀𝜆𝑘 − 𝑢 ≤ 0

∑ 𝜆𝑘 ≤ 𝑁(1 − 𝛼)𝑁
𝑘=1

𝜆𝑘 ∈ {0,1}
𝑤̅ ∈ Ω

 

𝑢 is a variable representing 𝑉𝑎𝑅𝛼. As can be seen 𝜆𝑘  are binary variables which will be equal to one 

for the equations corresponding to the losses greater than 𝑉𝑎𝑅𝛼 . 𝑀 is a sufficiently large number 

that makes sure that −𝑟̅𝑘𝑤̅ − 𝑀𝜆𝑘 ≤ 𝑢 for every 𝑘.  

4.3 Portfolio constraints 

In the optimization problems above the portfolio weights, 𝑤̅, are assumed to belong to some convex 

set Ω. This section will further specify this set and how to implement different portfolio constraints in 

the optimization problems. 

One necessary constraint is that the portfolio weights cannot be larger than one: 
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∑ 𝑤𝑖 ≤ 1𝑛
𝑖=1   

If the inequality above is changed to an equality constraint one has to invest 100 %  of capital in 

stocks.  

If short selling is not allowed the lower bound of the weights is zero: 

𝑤𝑖 ≥ 0 

If short selling is allowed then the variables 𝑥𝑖  and 𝑦𝑖  are introduced and 𝑤𝑖 is replaced by these: 

𝑤𝑖 = 𝑥𝑖 − 𝑦𝑖  , 𝑥𝑖 ≥ 0 𝑦𝑖 ≥ 0 

  𝑥𝑖  is the percentage bought of stock 𝑖 and 𝑦𝑖  is the percentage sold of the same stock. The upper 

bounds of 𝑥𝑖  and 𝑦𝑖  limits the maximum amount one can buy/sell of the specific stocks. 

If there is some limit for short selling, for example 30 % of the portfolio’s value: 

 ∑ 𝑦𝑖 ≤ 0.3𝑛
𝑖=1  

If the investor has some minimum requirement on the expected return of the portfolio: 

∑ 𝑤𝑖 ∗ 𝑟𝑖 ≥ "𝑟𝑒𝑡𝑢𝑟𝑛 𝑟𝑒𝑞𝑢𝑖𝑒𝑟𝑚𝑒𝑛𝑡"𝑛
𝑖=1  

4.4 Efficient frontiers 

The efficient frontier is a graph of the tradeoff between return and risk where each point along the 

curve represents an optimal portfolio, i.e. the portfolio with the lowest estimated risk for a certain 

target return. 

This frontier is calculated by setting a target return as a constraint in the optimization models and 

then calculating the optimal portfolio for this specific return. This is done for returns ranging from 0 

to the highest possible return in the portfolio (the return given by investing 100 % of the portfolio 

into the single stock with the highest estimated return) with a certain number of steps, for example 

1000. The result is an efficient frontier which shows how the portfolio risk increases as the set target 

return increases. 

Along this curve there comes a certain point where this specific portfolio provides the best tradeoff 

between risk and return, that is  
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑟𝑒𝑡𝑢𝑟𝑛

𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐶𝑉𝑎𝑅
  is as high as possible. If one were to remove 

the constraint that 100 % of the portfolio must be invested all the portfolios with lower target return 

than this “best trade-off return” would invest in this specific portfolio, but with a smaller percentage 

invested. 
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Graph 1 – Historical CVaR and Analytical CVaR efficient frontiers 
with 100 % of portfolio invested 

5. Results 

This section consists of the results of simulating the models. 

5.1 Efficient frontier  

This section describes the efficient frontiers when optimizing with respect to historical or analytical 

CVaR. Historical VaR is excluded from this section due to the computational reasons mentioned in 

the methodology. 

Each point along the frontier represents an optimal portfolio with the lowest possible CVaR for the 

given return. Historically and analytically optimized CVaR efficient frontier below: 

 

 

 

 

 

 

 

 

 

 

 

As can be seen there is no significant differences between the two models, other than the fact that 

the historical efficient frontier is somewhat shifted to the right in the graph, meaning that the 

historical approach generally finds optimal portfolios with higher estimated CVaR. Note that the 

above efficient frontiers are based on each model’s estimation of CVaR and not the result of 

historical simulations. 
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Graph 2 – Historical and Analytical CVaR efficient frontier with full investment constraint removed 

The following shows the efficient frontier when the constraint to spend 100 % of the portfolio’s 

capital is removed.  

 

 

 

 

 

 

 

 

 

 

 

The portfolios for the different optimal points along each curve starting from a CVaR around 0 up 

until a CVaR of around 2 % are all the same portfolio but with different percentages of the portfolio’s 

capital invested. When all of the capital is invested in the portfolio with the maximum trade-off 

between return and CVaR, the portfolio allocations change in order to create a higher return which 

leads to a higher CVaR. 
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5.2 Historical CVaR versus historical VaR 

This section is a comparison between optimizing a portfolio with respect to historical CVaR compared 

to optimizing with respect to historical VaR. Due to the VaR optimization being a mixed integer linear 

programming problem the calculations are considerably more time consuming than the CVaR 

optimization. The results in this section therefore only covers time horizons for past data for 3 

different time periods, 40 days, 70 days and 100 days. It also only includes a rebalance frequency of 

20 days. 

The following table shows the resulting returns and their standard deviation of some historical 

simulations for the historical CVaR and the historical VaR. The rebalance frequency is with what time 

interval the portfolio is rebalanced. This time interval is also the number of different phases of 

rebalancing that may occur, for example starting at day 1, rebalancing day 21, 41 or starting at day 2 

and rebalancing at day 22, 42 and so on. All these different phases are simulated. Time horizon is the 

number of days of past data on which the optimizations are based. Wins is the number of times the 

historical CVaR optimization for a given phase has higher total return than the historical VaR 

optimization, and vice versa. Mean is the mean, total return over the whole time period for all the 

different phases and SD is the standard deviation of these returns. For example, with time horizon 

for past returns set to 40 days the mean, total return at the end of the simulation would be 7.3791 

times the initial investment. Starting date for the optimizations is 2000-05-25 with maximum time 

horizon backwards dating back to 2000-01-03. End date for the simulations is 2015-04-08 

Rebalance 
frequency 

Time horizon 
Historical CVaR Historical VaR 

Wins Mean SD Wins Mean SD 

20 days 

40 20 7.3791 1.6843 0 5.1162 1.8218 

70 17 5.5528 1.2353 3 3.9955 0.5766 

100 15 5.2617 0.6570 5 4.5793 0.6361 
Table 4 – Historical CVaR versus Historical VaR, mean total return 

The following table shows the resulting mean CVaR for all the phases as well as the standard 

deviation of these values. 

Rebalance 
frequency 

Time horizon 
Historical CVaR Historical VaR 

Wins Mean SD Wins Mean SD 

20 days 

40 14 10.07 1.60 6 10.93 1.34 

70 8 10.41 1.34 12 10.26 0.99 

100 11 10.09 1.38 9 10.27 1.11 
Table 5 – Historical CVaR versus Historical VaR, mean 20-day CVaR 

The historical CVaR optimization is shown in Table 4 to perform remarkably better than the VaR-

minimization with respect to returns. The returns for CVaR are generally higher while the standard 
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Graph 3 – Historical simulation 2001-06-26 to 2015-04-08 

deviation is about the same with the exception being for 70 days of past data. Table 5 gives some 

insight as to how the difference in CVaR might look but is all in all inconclusive given the limited 

number of simulations performed. 

5.3 Historical simulation of portfolios 

The two portfolio optimization models are run through a number of historical simulations with 

varying periods of rebalancing and varying time horizons for past returns. The results of these 

simulations are presented in tables as well as example graphs of performance. These graphs include 

the historical approach for determining CVaR, the analytical approach and the OMXS30 index. This 

section also includes a histogram of the portfolios’ returns and actual CVaR and VaR over the time 

period in question.  

Historical VaR optimization is excluded due to lack of computational power. 

5.3.1 Historical simulation from 2001-06-26 to 2015-04-08 
The following simulation is only one example of what the two models’ returns, CVaR and VaR might 

be since it starts by creating an optimal portfolio at day 1, rebalancing day 21, 41, 61 and so on. By 

shifting the starting point with 1 day, the results will differ as the optimization now starts at day 2 

and rebalances day 22, 42, 62 and so on.  

When simulating a portfolio over the time period 2001-06-26 to 2015-04-08 with a period of 

rebalancing of 20 days and a time horizon for past returns of 320 days, the following graph is the 

resulting returns. 
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Graph 4 – Histogram of 20 day returns 2001-06-26 to 2015-04-08 

Graph 5 – Historical simulation VaR and CVaR outcome 
2001-06-26 to 2015-04-08 

Blue color represents the historical approach to minimizing portfolio CVaR while the red color 

represents the analytical approach to minimizing portfolio CVaR. Green is the OMX Index for the sake 

of comparison. 

The following histogram shows the distribution of the two models’ 20 day returns as well as the 

distribution of OMX Index returns over the same interval. The width of the bins is 0.05. 

 

 

 

 

 

 

 

 

 

The colors in this histogram represents the same as it does in the previous graph. Under the returns 

the CVaR, VaR and geometrical mean of monthly returns are found for the two models as well as for 

OMX Index. Here, CVaR is the mean of the lowest 5% of monthly returns which occurred during the 

simulation and VaR is the largest return of these 5%. This can be seen more clearly when zoomed in, 

as the next graph shows.  
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The historical VaR is larger than the analytical VaR but its CVaR is lower. OMX Index VaR and CVaR 

are much worse than both the analytical and the historical. 

As stated earlier, the previous graphs are an example what the comparison between the two models 

may look like. The next two tables are comprised of more rigorous results. 

The following table shows the resulting returns and their standard deviation of numerous historical 

simulations for the two optimization models with two different periods of rebalancing and 9 different 

time horizons for past return data. The rebalance frequency is with what time interval the portfolio is 

rebalanced. This time interval is also the number of different phases of rebalancing that may occur, 

for example starting at day 1, rebalancing day 21, 41 or starting at day 2 and rebalancing at day 22, 

42 and so on. All these different phases are simulated. Time horizon is the number of days of past 

data on which the optimizations are based. Wins is the number of times the historical optimization is 

better than the analytical, and vice versa. Mean is the mean, final return over the whole time period 

for all the different phases and SD is the standard deviation of these returns. Starting date for the 

optimizations is 2001-07-10 with maximum time horizon backwards dating back to 2000-01-03. End 

date is 2015-04-08. 

Rebalance 
frequency 

Time horizon 
Historical CVaR Analytical CVaR 

Wins Mean SD Wins Mean SD 

20 days 

40 15 5.1568 1.1090 5 4.7148 0.6170 

80 0 3.1115 0.3553 20 3.6625 0.2049 

140 4 2.9741 0.4036 16 3.2532 0.1636 

200 8 3.4576 0.3703 12 3.6417 0.1824 

260 20 4.4173 0.2381 0 4.0313 0.1321 

320 20 5.0059 0.3181 0 4.1496 0.1420 

380 20 4.8243 0.2634 0 4.0994 0.1507 

440 14 4.1863 0.1162 6 4.1146 0.1495 

500 17 4.1132 0.1968 3 3.9065 0.1227 

40 days 

40 20 4.2442 0.9104 20 4.2276 0.5690 

80 14 2.9853 0.7170 26 3.1747 0.2000 

140 10 2.9223 0.2280 30 3.1167 0.3147 

200 29 3.5692 0.3015 11 3.3585 0.2590 

260 38 4.3316 0.5381 2 3.7699 0.3429 

320 40 4.8250 0.4525 0 3.9395 0.2537 

380 40 4.4773 0.3337 0 3.8619 0.2685 

440 27 3.8775 0.3342 13 3.7982 0.3186 

500 32 3.9043 0.2179 8 3.7257 0.2872 

Table 6 - Historical CVaR versus Analytical CVaR, mean total return 
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The returns when minimizing CVaR using the analytical approach has a generally lower standard 

deviation as can be seen in Table 6 above. The standard deviation is considerably higher when only 

using 40 days’ worth of past data than it is using a larger sample size. This holds true for the 

analytical approach as well as the historical. This standard deviation then decreases as the sample 

size of past data increases.  

The highest achievable return when using a rebalancing period of 20 days is to use the historical 

method and looking at the past 40 days’ returns. However, this method also provides a very large 

standard deviation in comparison to other options in the above table. The next highest return is by 

using the historical approach and using 320 days of past data which provides a marginally lower 

return with a significantly lower standard deviation. This method also outperforms all the analytical 

approaches with a much larger return but yet a reasonable standard deviation. 

Using a rebalancing period of 40 days generally provides lower returns as well as higher standard 

deviations than using a rebalancing period of 20 days. Using 320 days and the historical approach 

provides the best return with a reasonable standard deviation when compared to other time 

horizons.  

It can also be concluded that using a 20 day rebalancing period performs better than using a 40 day 

rebalancing period. 

The next table shows the resulting, monthly CVaR and their standard deviation of numerous 

historical simulations for the two optimization models with two different periods of rebalancing and 

9 different time horizons for past return data. Mean is the mean, monthly CVaR in percent for all the 

different phases and SD is the standard deviation of these values. Starting date for the optimizations 

is 2001-07-10 with maximum time horizon backwards dating back to 2000-01-03. 

  



21 
 

Rebalance 
frequency 

Time horizon 
Historical CVaR Analytical CVaR 

Wins Mean SD Wins Mean SD 

20 days 

40 10 10.1899 1.6236 10 10.1528 1.2088 

80 9 10.4611 1.2981 11 10.2373 1.2225 

140 6 10.3968 1.3988 14 10.1088 1.2867 

200 5 10.1040 1.3366 15 9.8383 1.2339 

260 15 9.6343 1.0895 5 9.7371 1.1600 

320 17 9.3044 1.1364 3 9.7044 1.0601 

380 11 9.6516 1.0581 9 9.7915 1.0829 

440 18 9.4097 1.0166 2 9.7604 1.0846 

500 17 9.4851 0.9591 3 9.8134 1.0724 

40 days 

40 15 10.6321 1.3790 25 10.4690 1.4227 

80 6 10.7989 1.2297 34 10.3004 1.2402 

140 7 10.5635 1.3279 33 10.1629 1.2684 

200 16 9.9818 1.2065 24 9.8649 1.1950 

260 29 9.6069 1.0077 11 9.7986 1.1200 

320 30 9.4588 1.0641 10 9.7606 1.0492 

380 26 9.6680 1.0102 14 9.8568 1.0709 

440 34 9.5893 1.0062 6 9.8813 1.0632 

500 32 9.5494 0.9037 8 9.8746 1.0616 

Table 7 - Historical CVaR versus Analytical CVaR, mean 20-day CVaR 

Using 20 days as the rebalance frequency, the analytical approach of determining CVaR outperforms 

the historical approach both in terms of CVaR as well as with regards to standard deviation up until 

and including 200 days as the time horizon for past data. After this point, the historical CVaR has 

about the same or slightly lower standard deviation but with a consistently lower CVaR, where 320 

days performs the best. 

The above also holds true for using 40 days as the rebalancing frequency but with the difference that 

using 40 days generally returns a higher CVaR for the same time horizon of past returns. 

5.3.2 Performance during the economic crisis of 2008 
In this section, the two models are simulated historically to gauge their performance with respect to 

return, CVaR and VaR. The OMXS30 index is also included for the sake of comparison. 

The graph below is the performance for the two portfolios with a rebalancing interval of 20 days and 

a time horizon for past returns of 320 days. The simulation starts 2006-12-19 and ends 2010-04-24. 
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Graph 7 - Histogram of 20 day returns 2006-12-19 to 2010-04-29 

Graph 6 - Historical simulation 2006-12-19 to 2010-04-24 

 

 

 

 

 

 

 

 

 

 

 

 

The color blue represents the historical approach of minimizing CVaR while red represents the 

analytical approach. Green is the performance of the OMX index. The historical approach can be seen 

to outperform both the analytical approach and the Index. Both the historical and the analytical 

models manage to not fall as much as the index does during the crisis.  

The above described simulation gives the following histogram of returns for the different models and 

the index which provides more insight regarding the models’ performances. The colors below 

represents the same as above.  
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Graph 8 - Historical simulation VaR and CVaR outcome 2006-12-19 to 2010-04-24 

Both the analytical and the historical approach are seen to have their returns more centered 

together than the index. The index includes both the large losses as well as the large gains whereas 

the two models for determining CVaR manage to avoid the most extreme loss. 

Under the returns in the histogram, the CVaR, VaR and geometrical mean of monthly returns are 

found for the two models as well as for OMXS30 Index. Here, CVaR is the mean of the lowest 5% of 

monthly returns which occurred during the simulation and VaR is the largest return of these 5%. This 

can be seen more clearly when zoomed in, as the next graph shows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMX Index has the largest VaR as well as the largest CVaR. The historical VaR is larger than the 

analytical VaR, but the historical CVaR is considerably lower than the analytical. 

The returns show that the historical approach has a larger mean return, followed by the analytical 

and lastly the index. 

The above simulation is only one example of what the two models’ returns, CVaR and VaR might be. 

The following two tables are summaries of numerous simulations with two different intervals of 

rebalancing as well as 9 different time horizons for past data on which the optimizations are based. 

The first table shows the mean total returns of all 20 or 40 phases over the time period 2006-11-07 

to 2010-04-15 where SD is the standard deviation of these returns. For comparison, the return of 

OMXS30 index during this period was 0.9700, a decline of 3 %. 
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Rebalance 
frequency 

Time horizon 
Historical CVaR Analytical CVaR 

Wins Mean SD Wins Mean SD 

20 days 

40 15 1.2152 0.2304 5 1.0961 0.0598 

80 12 1.0540 0.0632 8 1.0396 0.0403 

140 8 0.9438 0.0679 12 0.9502 0.0143 

200 5 0.9076 0.0636 15 0.9651 0.0286 

260 20 1.1456 0.0552 0 1.0099 0.0365 

320 20 1.2246 0.0606 0 1.0391 0.0398 

380 20 1.2291 0.0411 0 1.0402 0.0476 

440 20 1.1774 0.0555 0 1.0477 0.0413 

500 14 1.0697 0.0345 6 1.0477 0.0363 

40 days 

40 34 1.1626 0.1884 6 0.9972 0.0706 

80 7 0.9517 0.0663 33 1.0047 0.0473 

140 4 0.8834 0.0594 36 0.9300 0.0304 

200 26 0.9722 0.0843 14 0.9394 0.0290 

260 40 1.1495 0.0824 0 0.9862 0.0258 

320 40 1.2416 0.0679 0 1.0143 0.0349 

380 40 1.2165 0.0744 0 1.0306 0.0449 

440 40 1.1413 0.0779 0 1.0184 0.0373 

500 36 1.0597 0.0481 4 1.0218 0.0370 

Table 8 - Historical CVaR versus Analytical CVaR, mean total return 

Using 20 days as the rebalance frequency, the historical approach outperforms the analytical for a 40 

day time horizon and an 80 day time horizon. The standard deviation is much larger for the historical 

than the analytical though, when looking at a 40 day time horizon. For 140 and 200 days, the 

analytical performs slightly better than the historical, both with respect to portfolio returns and their 

standard deviation. Including and above 260 days, the historical approach has a slightly larger 

standard deviation of returns but with significantly larger returns. 

Using a 40 day rebalancing frequency returns varying results when comparing the analytical method 

and the historical when looking at time horizons 40, 80 and 140. Above 140 days of past data, the 

historical method outperforms the analytical and the mean return for using 320 days as the time 

horizon is the largest and has a small standard deviation. 

The next table shows the mean CVaR over the time period 2006-11-07 to 2010-04-15. This table 

shows the mean, monthly CVaR in percent for all the different phases and SD is the standard 

deviation of these values. For comparison, the actual outcome for monthly CVaR for the OMXS30 

Index was 14.6345 %. 
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Rebalance 
frequency 

Time horizon 
Historical CVaR Analytical CVaR 

Wins Mean SD Wins Mean SD 

20 days 

40 13 12.7602 2.5850 7 12.2647 1.9353 

80 12 12.9674 2.3884 8 13.0384 2.0123 

140 6 13.6322 1.9807 14 13.3325 1.7576 

200 0 14.0481 1.8383 20 13.0073 1.6429 

260 9 12.5165 1.8109 11 12.7762 1.5958 

320 18 11.7379 2.0963 2 12.7673 1.5792 

380 19 11.6013 1.8619 1 12.7890 1.5181 

440 20 11.3989 1.8668 0 12.7676 1.5867 

500 18 12.3209 1.4591 2 12.9071 1.5631 

40 days 

40 22 13.5652 1.6778 18 13.5144 2.1748 

80 13 13.7645 2.1656 27 13.3329 1.8876 

140 18 13.8846 1.8997 22 13.7303 1.7817 

200 10 13.7249 1.7931 30 13.2886 1.6221 

260 27 12.5528 1.7490 13 13.0678 1.5907 

320 36 12.0498 1.8689 4 12.9920 1.5500 

380 40 11.6904 1.7646 0 13.0849 1.5524 

440 39 12.0119 1.8167 1 13.1399 1.5946 

500 29 12.4840 1.5480 11 13.1120 1.5716 

Table 9 - Historical CVaR versus Analytical CVaR, mean 20-day CVaR 

Using a rebalancing frequency of 20 days, the historical approach generally returns a lower CVaR 

than the analytical method when using 260 days or more for the time horizon of past data. The 

standard deviations of these CVaR are lower for the analytical model, but the CVaRs themselves are 

lower for the historical. The lowest CVaR is received by using 440 days as time horizon which also 

returns a rather low standard deviation when compared to the other historical simulations. 

When using a rebalancing frequency of 40 days, the result is largely as described above with the main 

difference being that a time horizon of 380 days returns the lowest CVaR as well as a rather low 

standard deviation.  
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6. Comparisons and discussion 

This section will compare and discuss the results presented in section 5 from different perspectives 

and regarding different, relevant aspects. 

6.1 Analytically versus historically 

When looking at Table 6 over portfolio returns in section 5.3.1. the performances of both the 

analytical and historical approach change when varying the time horizon of the optimization method. 

This variation is more noticeable when using the historical CVaR-optimization compared with the 

analytical one. The analytical approach also has a lower variance when looking at the returns within 

one fixed group.  

The conclusion that can be drawn from this is that the analytical optimization method produces more 

robust results compared to the historical method. This is a quite logical result since the optimal 

portfolio produced by the analytical method is generated with the help of a normal distribution, and 

the parameters of the distribution does not change very much if the number of days are increased 

from 260 to 320. The variance is also generally lower for the different time horizons as the changing 

of phase from 1, 21, 41 and so on to 2, 22, 42 and so on does not impact the choice of optimal 

portfolio very much when assuming a normal distribution. For the historical optimization on the 

other hand the individual daily returns might have a much larger impact on the resulting portfolio as 

only the lowest 5 percent of the daily returns are relevant and a day resulting in high losses carries 

more weight.  

Since risk often is measured in terms of volatility one might be inclined to draw the conclusion that 

the analytical optimization method is better since it varies less. However looking at the actual returns 

of the two optimization methods the historical one almost always beats the analytical one when 

considering time periods greater than 260 trading days. When the time period is shorter the results 

differ much between the two approaches and it is difficult to draw any real conclusions. This thesis’ 

hypothesis as to why the historical method outperforms the analytical when considering long time 

periods is that it accounts for the fat tails in the lower end of the distribution while the analytical 

method does not. For short time periods the historical method lacks enough data. For a certain 

number of data points, around 320 days for example, the standard deviation for the historical 

method is lowered, the returns higher and the CVaR lower. A too large sample size might include 

outdated data which are not indicative of future returns or stock correlations. 

When observing how well the methods actually manage to minimize CVaR the results are the same 

as they are for the returns, the historical outperforming the analytical. In most of the cases the time 
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horizons that generated a better return for the historical method also generated a better CVaR. This 

is an interesting notation that for a certain time horizon one method produces a higher return as well 

as a lower risk (CVaR). In general the investor has to balance risk against returns when choosing 

optimization method but if one could have both it is clearly preferable. 

The reason for this might depend on two different aspects. The first is that when having a large 

number of samples for the daily returns the historical method actually manages to describe the 

“true” return distribution in a superior way compared to the analytical. This includes describing tail-

dependence and fat tails in the lower end of the distribution which can be a factor to why the 

historical method generates a better CVaR. The second aspect is that the analytical method 

minimizes the variance of the returns. This leads to that it tries to avoid big returns as well as avoid 

great losses. This holds true not only for the normal distribution but for all symmetrical distributions. 

The historical method does not penalize large returns at all since as long as the predicted CVaR is low 

it does not matter how the positive part of the distribution behaves. 

The conclusion is thus that the historical method is superior to the analytical method if the time 

horizon for data collection is large enough, about 260 days or more. The robustness of the analytical 

method would suggest that it is to prefer when the time horizon of past return data is short, if one 

were to not have access to more data. 

6.2 VaR versus CVaR 

One big drawback of the historical VaR-optimization method is that it takes considerably longer to 

run compared to analytical VaR/CVaR (quadratic programming) or historical CVaR (linear 

programming). For example, if 𝑎 = 0,95, 𝑁 = 320 and the number of stocks is equal to 33, 

optimizing historical VaR takes roughly 3300 times longer than optimizing analytical VaR (using 

Matlab’s intlinprog and quadprog functions). 

As can be seen in Table 4 the historical CVaR – optimization is superior to the historical VaR-

optimization when looking at the generated returns. But when looking at the performed CVaR in 

Table 5 the results are quite even.  This result is rather interesting, the performed risk of the VaR-

optimization does not exceed the CVaR-optimization, but the return for the VaR-optimization is 

significantly lower. However, this thesis lacks the computational power needed to better assess this 

situation or draw any real conclusions. 
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6.3 Different underlying assumptions 

The length of the rebalancing interval has an effect on the portfolios’ performances over time. As can 

be seen in tables 4 and 6 the returns for both the analytical CVaR-optimization and the historical 

CVaR-optimization are higher with a rebalancing interval of 20 days instead of 40.  

When looking at the performed CVaR of the two methods it is found that CVaR in general is larger 

when the rebalancing interval is increased. This result is not very surprising since the shorter the 

rebalancing frequency, the more agile the portfolio allocation will be and the quicker the portfolio 

can react to new market information. For example the opportunity to capitalize on a running stock. 

6.4 Performance during different market conditions 

A highly relevant factor for the optimization methods is how well they perform during economic 

crises. It is during these periods that risk minimization is of the greatest importance, and if a risk 

optimization method is successful it manages to lessen the impact the crisis has on the portfolio. As 

can be seen in Graph 6 both the analytical and historical CVaR optimization methods clearly achieve 

this. However when analyzing Table 8 and Table 9 the historical CVaR-minimization method performs 

noticeably better compared to the analytical one for time horizons greater than 320 days, both 

regarding generated return as well as CVaR. This outcome is very similar to the outcome when 

analyzing the performances during “normal market conditions”, that is from 2000 to 2015. The 

conclusion to be drawn from this is that for a long time horizon for data collection the historical 

CVaR-optimization is superior to the analytical. Another interesting aspect of Table 9 is that relatively 

long time horizons (about 400 days) seem to generate the best CVaR both for the analytical and the 

historical method. This result is a bit surprising because when using a long time horizon there are 

numerous data points for the days before the decline begins that weighs into the optimization 

model. One might think that the most relevant data comes from the days after the economic decline 

begins, and hence the data for the days of normal market conditions contains just unwanted biases 

when examining the portfolio performances during non-normal market conditions, such as the crisis 

of 2008. But apparently the stock data for normal market conditions also contain highly relevant 

information when putting together portfolios during economical declines. 
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7. CVaR/VaR-optimization and the effect of tail dependence for 

different types of investors 

This section discusses the results from section 5 and 6 with respect to how it affects different types 

of investors on the market. It serves to answer the question: 

 Of what importance is the market’s tail dependence for different kinds of investors and how 

should it be handled? What investors have a use for CVaR and VaR as risk measurements? 

7.1 Methodology 

As a basis for the regulations which different types of funds are subject to, the U.S. Securities and 

Exchange Commission’s rules and descriptions are used. The results from the previous part of this 

thesis are then discussed with respect to its relevance for the different types of investors together 

with theories from courses within corporate finance and economics and literary sources such as 

(Berk & DeMarzo, 2014) and (Markowitz, 1952).  

The discussion regarding banks and the relevance of CVaR and VaR are largely based on the Basel 

accords Basel I and Basel II as well as sources discussing these such as (Latham & Watkins;, January 

2011). The potential resulting complications of risk mismanagement are analyzed with (Berk & 

DeMarzo, 2014) as the principal source. 

An interview with Tomas Sörensson is conducted to receive a broader view of different market actors 

and perspectives for which CVaR and VaR might hold relevance. 

7.2 Theoretical framework 

The discussion in this part is based on the classical investment assumption that investors have to 

balance return against risk. To reach a higher return the investor has to increase the risk of the 

portfolio. This is one of the key assumptions of the “Modern Portfolio Theory” (Markowitz, 1952). 

This theoretical statement is also supported by several empirical studies, for example (Berk & 

DeMarzo, 2014). 

Furthermore the investor is assumed to be rational and risk averse. If two portfolios have the same 

expected return the investor chooses the one with the lowest risk. As a direct result of this the 

investor will always choose a portfolio along the efficient frontier. Which of these portfolios that is 

chosen depends on the preferences of the investor, whether a low risk or a high return is desired. 

The empirical findings presented earlier in this thesis show that the historical CVaR-optimization 

outperforms the analytical method. This in turn also means that the historical optimization 

outperforms portfolio optimization according to MPT, variance minimization. As such an investor 
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may achieve a better portfolio, lower risk and/or higher return, than when using the classical 

framework and the rational investor should hold a portfolio with minimized CVaR according to the 

historical model rather than minimized variance.  

This entire thesis is built upon the widely established paradigm that stock prices from the past 

contains valuable information regarding how the stocks will perform in the future. For example how 

the stocks are correlated with one another and which stocks are in a positive or negative trend. 

There are several conclusions that can be drawn from the earlier results of this thesis. Using the 

classical assumption of normal distribution of returns is shown to underestimate the likelihood of 

high losses due to fat tails in the actual distribution. Our historical approach better manages to gauge 

the actual portfolio risk and as such also avoids the larger losses better than the analytical model. A 

great drawback of assuming a symmetrical return distribution (such as the normal distribution) is 

that it minimizes large profits as well as large losses. The historical, discrete distribution does not 

penalize large profits and therefore manages to not only minimize the potential large losses but also 

maintain some of the larger gains. 

Our results indicate that CVaR is superior to VaR from a practical as well as from a theoretical point 

of view. Optimizing with respect to CVaR takes considerably less computational power compared to 

VaR regarding the historical optimization. Furthermore VaR as a risk measure does not provide any 

information about the expected loss the portfolio is subject to if the unlikely scenario of exceeding 

VaR were to occur. 

During normal periods in the economy, when there is no economic crisis, it is shown in section 5.2.1 

that the portfolio optimization with respect to both historical as well as analytical CVaR very much 

outperforms the OMX index. The histogram displays the effects of the optimizations as the resulting 

CVaR and VaR for both the analytical and the historical approach are well below those for the index. 

It is also shown that the historical approach is superior if using a larger time sample of past returns. 

Looking at section 5.2.2, the simulations during times of economic stress and crisis, there is a much 

more obvious effect of optimizing with respect to minimizing CVaR. These graphs and tables show 

how the CVaR methods manage to avoid incurring large portfolio losses as well as lessen the larger 

losses all together. The methods also create portfolios which largely outperforms the index, as can be 

seen from the tables in 5.2.2, with the historical approach being superior. 
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7.3 Discussion from the perspective of different investors 

7.3.1 Banks 
In 1973 the Basel Committee on Banking Supervision was created. This committee published a set of 

minimum capital requirements which they recommended banks to follow.  

Basel I was incorporated into law in the G-10 countries in 1992. It has since been followed by Basel II 

and Basel III, both of which includes Value at Risk to assess market risk and stress testing of banks 

(Latham & Watkins;, January 2011). As previously stated in this thesis, using Value at Risk to assess 

potential losses might misguide the bank into being riskier than preferred as VaR gives no 

information regarding potential losses exceeding VaR. Complementing VaR with using CVaR would 

therefore be advisable as it provides valuable information regarding the actual risk of incurring a 

substantial loss. Such a loss for a bank, even if temporary, may result in serious problems and even 

lead to a bank defaulting due to liquidity problems or insolvencies. It may also result in the bank 

failing to meet the capital requirements which it is subject to and hence risk facing penalty fines 

(Lindquist, 2004). It is therefore of great importance that the risk measures used manage to 

determine the risk well and that the risk measure itself is not misguiding or is misunderstood by the 

user.  

Ignoring the effects of the tail dependence on the market is shown to lead to a riskier portfolio and is 

therefore something that should be accounted for and incorporated into models for risk assessment. 

This thesis shows that this holds true for a portfolio consisting of stocks and it is reasonable to draw 

the conclusion that the same can be said for other markets experiencing fat tails in the return 

distribution. 

During such periods as the economic crisis of 2008 it is of grave importance for banks to lessen their 

potential risk exposure in order to avoid financial complications. Thus it is vital to use the methods 

for determining risk which best approximates and avoids the large losses. During the crisis of 2008, 

the difference between the historical approach and the analytical becomes much more apparent 

than when looking at the larger time period used in 5.2.1. As such, if a bank were to assess their 

market risk using an inferior method, in the case of a stock portfolio the analytical one, they may be 

faced with larger losses than estimated. 

7.3.2 Investment funds 
Different kinds of investment funds are subject to different kinds of requirements, partly due to the 

fund structure itself but also due to a fund’s own rules and regulations. This section serves to discuss 

the importance of using CVaR and VaR as risk measures when optimizing a portfolio from the 

perspective of fund managers. 
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For all kinds of investment funds there is a trade-off between risk and return (Sharpe, 1964). Some 

funds are by construction very volatile and subject to large losses as well as large profits whereas 

other funds are more conservative in their investing and seek to minimize their risk exposure to the 

best of their ability. The subject discussed in this thesis is best applicable to equity funds but might 

hold some value to other types of funds as well. 

As shown in the results, minimizing CVaR using the historical approach (for a time horizon for past 

data of around 260 days and above) creates a better portfolio than using any other approach, both 

with respect to returns and CVaR. This method is therefore to prefer at all times over the analytical 

approach as it also manages to perform much better during periods of economic crisis. The investors 

using this model would experience fewer large losses, smaller losses overall and also a higher rate of 

return. Unlike the ordinary private saver the funds should not have any problem of implementing the 

models presented in this thesis. Neither the data handling nor setting up the optimization models 

should cause any difficulties. 

An equity fund investing on the stock market should always be aware of the phenomenon of tail 

dependence of market returns. Using a historical approach for minimizing CVaR best avoids the large 

losses since it accounts more for the fat tails of the return distribution than assuming a normal 

distribution does. Ignoring the tails of the return distribution when creating a portfolio will lead to a 

misguided assessment of risk as well as a possible underperformance due to the occurrence of more 

and larger losses. As seen in Graph 5 and Graph 8 there is a much larger distance between VaR and 

CVaR for the analytical method than it is for the historical method. Using an analytical VaR would 

therefore give the investor the idea that the portfolio is less risky. The fact that the two risk measures 

are closer together as they are for the historical approach points to the conclusion that this approach 

is better at reducing the effect tail dependence has on the portfolio. To be able to neutralize the 

effect of tail dependence would be highly desirable for the funds since this minimizes the likelihood 

of large losses. This in turn might lead to that the persons who are investing in the fund feel safer and 

therefore are less likely to leave. 

If a portfolio uses leverage when investing it has to maintain the ability to pay off its debts as well as 

the financial costs related to leveraging. Incurring large losses in such a position could result in 

financial complications and it might therefore be of relevance to track the portfolio CVaR using the 

appropriate model (in this case the historical) so as to best gauge and avoid unnecessary risk taking. 

It is often not very attractive to invest in a fund which has shown to be subject to large losses from 

time to time even if its overall return is decent. Thus managing to create an almost equal return, or 

preferably better, whilst avoiding incurring large losses might be a much more preferable option for 
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funds directed towards private investors who might be rather risk-averse. From a marketing 

perspective it could be a good idea for funds to use the risk/return tradeoff as a way to differentiate 

themselves from competitors. 

7.3.3 Private investors 
A private investor is very rarely subject to the same or similar regulations or constraints as a fund 

when it comes to investing and the investor also often lack the same options as an investment fund 

such as leveraging a portfolio by loans or short selling. Lending money as a private investor is often 

more expensive and therefore the potential downside of leveraging becomes larger. If a private 

investor were to underestimate or ignore the large tails in the lower end of the return distribution 

whilst leveraging a portfolio the results might be serious financial complications. The same can be 

said for when the investor uses personal savings as the purpose of these might be to use during 

retirement. To fully implement the models presented in this thesis requires some knowledge in 

mathematics and programming which the ordinary saver not might be very familiar with. But the 

result in this thesis further supports the importance of diversification (divide the capital amongst 

multiple stocks to reduce the risk). This is something that the “ordinary investor” should be fully 

aware of. 

A special type of investing is retirement saving. When there is a considerable time period remaining it 

is often better to invest in riskier portfolios or funds as these generally provide a higher return over 

time than more conservative ones (Markowitz, 1952) (Berk & DeMarzo, 2014). As the time for 

retirement comes closer however, this is not always the case. In order to have financial security it is 

not preferable to hold risky portfolios as this may lead to temporary large losses and a harsh 

economic situation for the individual. Therefore it is optimal to be able to avoid incurring large losses 

while still maintaining a decent return on the invested capital for the years to come. Tracking CVaR 

and using it as a subject for optimization is shown in 5.3.2 to avoid large losses during periods of 

economic turmoil which would give a retirement investor some form of safety from large economic 

downturns. A private investor using this method stands to make considerable gains while being 

somewhat shielded from large market declines such as those during a financial crisis. For the riskier 

investor, the best quotient between expected return and CVaR may be found along the efficient 

frontier and should lead to a more volatile portfolio but with higher long-term return. 
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8. Conclusion 

The occurrence of fat tails, due to tail dependence, in the return distribution on the market is 

something to take into account when optimizing a portfolio. The discrete historical probability 

distribution based on historical data takes this into account better than the analytical method of 

approximating returns by a normal distribution for minimizing CVaR does. It also does not penalize 

large gains as symmetrical distributions do when minimizing CVaR. There are noticeable differences 

for the two models’ performance over a longer time period such as 03-01-2000 to 08-04-2015 as well 

as during periods of economic crisis. An investor investing in stocks should be well aware of the fat 

tails of the return distribution, especially during periods of economic crisis, as ignoring them is shown 

to be unwise. 

Banking institutions which by Basel II and Basel III or through internal regulations are subject to use  

VaR as a risk measure should also incorporate the usage of CVaR as it gives more accurate 

information of market risk regarding potential losses as well as holds better mathematical properties.  

Private investors, given the effect of tail dependence, should be vary of holding soon-to-be-used 

pension funds in portfolios which are not optimized at least to some degree with respect to CVaR 

using a well-performing method such as the historical one. Were a crisis to occur while the capital is 

placed in a portfolio with high CVaR an investor risks losing a substantial amount. 

Using a symmetrical distribution such as the normal distribution to determine CVaR and VaR not only 

minimizes the risk of large losses, but also does the same for the chance of large profits. Therefore, 

using a historical approach to create a discrete probability distribution not only generates a lower 

CVaR but also higher returns. 

This thesis also concludes that using CVaR minimization based on a discrete probability distribution 

outperforms the classical portfolio optimization dictated by MPT since the analytical optimization of 

CVaR and VaR is equal to minimizing the portfolio variance. As such, an investor should use historical, 

discrete CVaR minimization instead of Markowitz’s variance minimization to achieve lower risk and 

higher return. 
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Appendix 
1. List of stocks 

ABB HM B Securitas B 

Autoliv Holmen B Handelsbanken A 

Alfa Laval Investor B Skanska B 

Assa Abloy B Kinnevik B SKF B 

Atlas Copco A Lundin Petroleum Stora Enso A 

Atlas Copco B MTG B Swedbank A 

Astra Zeneca Nordea Swedish Match 

Boliden Nokia Tele2 B 

Electrolux B Sandvik TeliaSonera 

Ericsson B SCA B Trelleborg B 

Getinge B SEB A Volvo B 

 

2. Mathematical derivation of analytical CVaR, inspired by (Yamai & Yoshiba, January, 2002). 

If a stochastic variable ∈ 𝑁(0, 𝜎2) , then 

 𝐸[𝑋 | 𝑋 ≤ 𝛽] = ∫ 𝑥 ∗ 𝑓𝑋|𝑋≤𝛽(𝑥) 𝑑𝑥 = ∫ 𝑥
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2

2 = 

= −
𝜎

(1 − 𝛼)√2𝜋
∗ 𝑒−

( Φ−1(𝛼))
2

2  

If we set 𝑠𝛼 = −
1

(1−𝛼)√2𝜋
∗ 𝑒−

( Φ−1(𝛼))
2

2  then: 

 𝐸[𝑋 | 𝑋 ≤ 𝜎Φ−1(1 − 𝛼)] = 𝜎𝑠𝛼 

𝑠𝛼 is consequently a constant depending on the confidence level 𝛼. The codomain of 𝑠𝛼 is the 

interval (−∞, 0). 

If 𝑅 ∈ 𝑁(𝜇, 𝜎2) then the analytical 𝐶𝑉𝑎𝑅𝛼 is computed as follows: 

 𝐶𝑉𝑎𝑅𝛼 = 𝐸[−𝑅 | 𝑅 ≤ −𝑉𝑎𝑅𝛼] = 𝐸 − [𝑅 | 𝑅 ≤ 𝜇 + 𝜎Φ−1(1 − 𝛼)] = 

= 𝐸[−𝑅 |𝑅 − 𝜇 ≤ 𝜎Φ−1(1 − 𝛼)] 
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We do the substitution 𝑅 − 𝜇 = 𝑅̃ Then 𝑅̃ ∈ 𝑁(0, 𝜎2) 

= 𝐸[−𝑅 | 𝑅 − 𝜇 ≤ 𝜎Φ−1(1 − 𝛼)] = 𝐸[−𝑅̃ − 𝜇 | 𝑅̃ ≤ 𝜎Φ−1(1 − 𝛼)] = 

= −𝐸[𝑅 ̃| 𝑅̃ ≤ 𝜎Φ−1(1 − 𝛼)] + 𝐸[−𝜇 | 𝑅̃ ≤ 𝜎Φ−1(1 − 𝛼)] = −𝐸[𝑅 ̃| 𝑅̃ ≤ 𝜎Φ−1(1 − 𝛼)] + (−𝜇) = 

= −𝜎𝑠𝛼 − 𝜇 

To conclude: 

𝐶𝑉𝑎𝑅𝛼 = −𝜎𝑠𝛼 − 𝜇 
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